

Lively Task Seating

Environmental Product Declaration

EPD-S-P-12457 Date of Issue: May 20, 2024 Date of Expiration: May 19, 2029

Product Category Rule

BIFMA PCR for Seating, UNCPC 3811 EN 15804+A2:2019/AC2021 Construction Products PCR:2019:14 version 1.3.4 In accordance with ISO 14025

Program

Program: The International EPD System www.environdec.com Program Operator: EPD International AB

Functional Unit

1 Lively Task seat with an aluminum base, maintained for a period of 10 years produced in Europe.

This EPD was not written to support comparative assertions. EPDs based on different PCRs or different calculation models may not be comparable. When attempting to compare EPDs or life cycle impacts of products from different companies, the user should be aware of the uncertainty in the final results due to and not limited to the practitioner's assumptions, the source of the data used in the study and the software tool used to conduct the study. An EPD should provide current information and may be updated if conditions change. The stated validity is therefore subject to the continued registration and publication at www.environdec.com.

Program Operator	The International EPD® System			
	EPD International AB www.environdec.com			
	Box 210 60 info@environdec.com			
	SE-100 31 Stockholm			
	Sweden			
Manufacturer Name and Address	Haworth, Inc.			
	One Haworth Center			
	Holland, MI 49423			
	sustainability@haworth.com			
Declaration Number	EPD-S-P-12457			
Declared Product and Functional Unit	1 Lively Task seat with an aluminum base, maintained for a 10-year period			
	produced in Europe			
Reference PCR and Version Number	CEN standard EN 15804 serves as the core PCR			
	PCR 2019:14 Construction products, version 1.3.4			
Draduat's intended Application and Liss	BIFMA PCR for Seating: UNCPC 3811, Version 3 Commercial Furniture			
Product's intended Application and Use Product RSL				
	10 years			
Markets of Applicability				
Date of Issue	May 20, 2024			
Period of Validity	5 years from date of issue			
ЕРД Туре	Product Specific			
Intended Audience	Business-to-Business, Business-to-Consumer			
Range of Dataset Variability	N/A			
EPD Scope	Cradle to Grave			
Year of reported manufacturer primary data	2022			
LCA Software and Version Number	Sphera LCA FE (GaBi) 10.7			
LCI Database and Version Number	Sphera MLC (GaBi) 2023.2			
LCIA Methodology and Version Number	EN 15804+A2 (EF 3.1), IPCC AR6 + TRACI 2.1			
Core PCR review was conducted by:	The Technical Committee of the International EPD® System. See			
	www.environdec.com for a list of members. Review chair: Claudia A. Peña,			
	University of Concepción, Chile. The review panel may be contacted via the			
	Secretariat. www.environdec.com/contact.			
The sub-category PCR review was conducted by:	Thomas Gloria, PhD (chair)			
	Jack Geibig, P.E.			
	Michael Overcash, PhD			
Independent, third party verification of the declaration and	Thomas Gloria, Industrial Ecology Consultants			
data, according to ISO 14040 (2006), ISO 14025 (2006),	Thomas Close			
14025 (2006), EN 15804+A2, and BIFMA PCR for) from foring			
Seating: UNCPC 3811 V3, which serves as the core PCR.				
EPD verification by individual verifier	Approved by: The International EPD® System			
This life cycle assessment was conducted in accordance	WAP Sustainability Consulting			
with ISO 14044, EN 15804+A2, and the reference PCR by:				
Procedure for follow-up of data during EPD validity				
involves third-party verifier				

The EPD owner has the sole ownership, liability, and responsibility for the EPD.

EPDs within the same product category but registered in different EPD programmes, or not compliant with EN 15804, may not be comparable. For two EPDs to be comparable, they must be based on the same PCR (including the same version number) or be based on fully-aligned PCRs or versions of PCRs; cover products with identical functions, technical performances and use (e.g. identical declared/functional units); have equivalent system boundaries and descriptions of data; apply equivalent data quality requirements, methods of data collection, and allocation methods; apply identical cut-off rules and impact assessment methods (including the same version of characterisation factors); have equivalent content declarations; and be valid at the time of comparison. For further information about comparability, see EN 15804 and ISO 14025.

This study utilizes the BIFMA Seating PCR as a cPCR. This BIFMA PCR was used to meet market expectations such as Building Transparency EC3 comparisons, LEED and existing vendor procurement requirements, and product scoring programs. The EPD should not be used outside of this context.

Company Description

Haworth strives to be a sustainable corporation. We believe operating a sustainable corporation will allow us to help people do great things for generations to come. We are on a journey—one that promotes longevity and delivers value to the people, communities, and planet that we serve. At our core, we are a family—and we weather challenges together. Haworth is built upon a culture that empowers members and all stakeholders to make positive changes. We strengthen existing partnerships and build new ones, while empowering our members and leveraging our global reach, as we continue our drive toward making positive changes for the people and communities, we serve all over the world.

Product Description

Lively Task brings advanced features and a light-scale aesthetic to the people responsible for getting work done. Science-based ergonomics, personalized comfort, and design, durability at a sensible price, seat-depth adjustment, seat-height adjustment, and tilt-tension adjustment, available in a wide array of colors. Lively Task is manufactured in Queluz, Portugal, and in Cyprianów, Poland – both ISO 14001 certified manufacturing facilities. This product can be easily disassembled at the end of its useful life. Components are identified with ISO recycling symbols and material information to assist in the recycling effort, where practical. Haworth offers circular service solutions for product takeback, refurbishment, or recycling after the product's useful life.

Results were calculated for a single configuration of the seating product manufactured at two facilities. The office chair configuration reviewed (2965) consists of a mesh back, backstop forward tilt with adjustable seat depth, lumbar support, 3D arms, and an aluminum base and was determined to have the highest potential impacts of all Lively task model configurations produced in Europe, making the results in this EPD conservative and thus representative of all products listed. Product codes within the variation allowance include those beginning with 296 and 297. Lively Task chairs with leather are not represented under this EPD.

This product falls under UN CPC 3811.

The composition of the chair reviewed is provided below, with a total product weight of 14.58 kg and total packaging weight of 0.41 kg. The composition is a weighted average based on production volume at the two manufacturing sites under review. Material composition is reported per unit of product.

Material	[kg]	[%]	Recycled Content [%]	Resource Type
Product				
Nylon PA6	4.74	33%	0%	Virgin, Non-renewable
Aluminum	2.99	21%	60%	Recycled, Virgin, Non-renewable
Steel	2.33	16%	52%	Recycled, Virgin, Non-renewable
Fiberboard	2.33	16%	0%	Virgin, Non-renewable
Polyurethane	1.36	9%	0%	Virgin, Non-renewable
Acrylonitrile Butadiene Styrene	0.33	2%	0%	Virgin, Non-renewable
Polyester Fabric	0.25	2%	0%	Virgin, Non-renewable
Polypropylene	0.19	1%	16%	Recycled, Virgin, Non-renewable
Other	0.06	<1%	0%	Virgin, Non-renewable
Packaging				
Polyethylene	0.18	44%	0%	Virgin, Non-renewable
Cardboard	0.18	44%	47%*	Recycled, Virgin, Renewable
Paper	0.05	13%	0%*	Virgin, Renewable

3

Additional Environmental Information

The product under review is manufactured at zero waste-to-landfill facilities that are ISO 14001- and ISO 9001-certified. In addition, this product has the following certifications:

- GREENGUARD Gold Certified
- Fire Retardancy: Class 1 IM Certified
- GS Safety Award
- Quality Office Certified

Functional Unit

- LGA Ergonomics
- Red Dot Award
- NF Environment
- European Level 3 Certified

The functional unit according to the PCR is one unit of seating to seat one individual, maintained for a 10-year period produced in Europe. The product under study has a 10-year service life under ANSI/BIFMA X5.5 and therefore does not require replacements to meet the functional unit.

LCA Stages

Materials Acquisition & Pre-Processing | Includes raw material extraction, pre-processing of materials, and transport to production.

Production | Includes component and final assembly manufacturing operations, both by Haworth and upstream suppliers, as well as intermediate transport and packaging requirements.

Distribution, Storage, and Use | Includes an average distribution to customers. No additional storage is required. There are no impacts associated with use of the product.

End-of-Life | Includes transport to and disposal of product and packaging based on average European EOL rates.

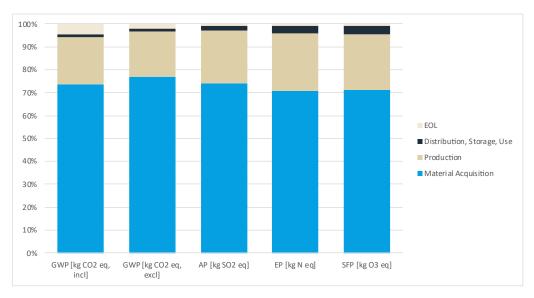
LCA Information

General principles of allocation were based on ISO 14040/44. Where possible, allocation was avoided. At the part supplier production facilities, manufacturing inputs and outputs are allocated to co-products by mass because of the use of secondary datasets and no primary data available for part suppliers. At Haworth assembly facilities, manufacturing inputs and outputs are allocated to co-products based on economic value. This choice was deemed the most appropriate at Haworth facilities due to the availability of data on economic value. As a default, Sphera Managed LCA Content datasets use a physical mass basis for allocation.

Throughout the study recycled materials were accounted for via the cut-off method. Under this method, impacts and benefits associated with the previous life of a raw material from recycled stock are excluded from the system boundary and includes the impacts associated with reprocessing and preparation of recycled materials. Additionally, impacts and benefits associated with secondary functions of materials at end of life are also excluded.

Production of capital goods, infrastructure, and personnel-related activities are excluded, as required by the BIFMA PCR for seating.

LCA Results


All results are given per functional unit, which is one unit of seating to seat one individual, maintained for a 10-year period. Results are reported separately by life cycle stage per the BIFMA PCR for seating. The results shown in the table below are a weighted average based on production volume at the two manufacturing sites under review. It is discouraged to use of results for Material Acquisition and Production without considering the results for End of Life.

Impact Category	Material Acquisition	Production w/ grid*	Production w/ renewables*	Distribution , Storage, Use	EOL	Total**
IPCC AR6 LCIA Impacts						
Global Warming Potential, incl biogenic [kg CO2 eq]	6.59E+01	1.83E+01	1.70E+01	1.31E+00	3.90E+00	8.94E+01
Global Warming Potential, excl biogenic [kg CO2 eq]	6.97E+01	1.80E+01	1.67E+01	1.31E+00	1.81E+00	9.08E+01
TRACI 2.1 LCIA Impacts						
Acidification Potential [kg SO ₂ eq]	1.98E-01	6.08E-02	5.86E-02	6.03E-03	1.79E-03	2.66E-01
Eutrophication Potential [kg N eq]	1.20E-02	4.24E-03	4.01E-03	5.35E-04	1.68E-04	1.70E-02
Ozone Depletion Potential [kg CFC 11 eq]	4.06E-09	4.32E-10	4.34E-10	3.38E-15	3.71E-09	8.20E-09
Smog Formation Potential [kg O3 eq]	2.72E+00	9.19E-01	8.75E-01	1.40E-01	3.89E-02	3.82E+00
Resource Use Indicators	-					
Renewable primary resources used as energy carrier [MJ]	1.74E+02	6.80E+01	9.64E+01	7.34E-01	2.87E-01	2.43E+02
Renewable primary resources with energy content used as material [MJ]	0.00E+00	3.19E+00	3.19E+00	0.00E+00	0.00E+00	3.19E+00
Renewable primary resources, total [MJ]	1.74E+02	7.12E+01	9.96E+01	7.34E-01	2.87E-01	2.46E+02
Non-renewable primary resources used as energy carrier [MJ]	7.99E+02	1.25E+02	1.04E+02	1.84E+01	2.80E+00	9.46E+02
Non-renewable primary resources with energy content used as a material [MJ]	2.30E+02	5.37E+01	5.37E+01	0.00E+00	0.00E+00	2.84E+02
Non-renewable primary resources, total [MJ]	1.03E+03	1.79E+02	1.58E+02	1.84E+01	2.80E+00	1.23E+03
Recovered energy [MJ]	0.00E+00	1.48E+01	1.48E+01	0.00E+00	1.81E+01	3.28E+01
Net fresh water usage [kg]***	4.42E-01	1.41E-01	1.54E-01	2.52E-03	9.17E-03	5.95E-01

*Impacts in the "production w/ grid electricity" stage includes electricity from the grid and on-site renewables whereas "production w/ purchased renewables" also includes electricity from the grid (if any), on-site renewables (if any), and voluntary renewable electricity purchased by Haworth for production purposes. **Includes material acquisition, production w/ grid, distribution, storage, use, and EOL.

***Water usage from electricity generation is included

The chart below presents the relative contribution of each life cycle stage to the TRACI 2.1 and IPCC environmental impact categories by life cycle stage per the BIFMA PCR for seating.

Additionally, results have been calculated using LCIA methodologies for core environmental impact categories specified in EN 15804+A2, as well as LCI indicators required by EN15804+A2. Results are reported per functional unit. For this product, 1 unit of product is required to meet the functional unit. The results are relative expressions and do not predict impacts on category endpoints, the exceeding of thresholds, safety margins, or risks. The results shown in the table below are a weighted average based on production volume at the two manufacturing sites under review. It is discouraged to use of results for A1-A3 without considering the results for C1-C4.

	Product Stage w/ grid*	Product Stage w/ renewables*	Construct	tion Stage				Us	e Sta	ge				End of Life	Load	nefits and s Beyond the em Boundary
	A1-A3	A1-A3	A4	A5	B1	B2	В3	B4	B5	B 6	B7	C1	C2	СЗ	C4	D
GWP-GHG [kg CO2 eq.]	8.77E+01	8.64E+01	1.31E+00	5.90E-02	0	0	0	0	0	0	0	0	3.74E-02	1.61E+00	1.16E-01	-3.16E+01
Climate Change - total [kg CO2 eq.]	8.42E+01	8.28E+01	1.57E+00	3.13E-01	0	0	0	0	0	0	0	0	3.77E-02	3.19E+00	1.62E+00	-2.92E+01
Climate Change, fossil [kg CO2 eq.]	8.76E+01	8.62E+01	1.31E+00	5.46E-02	0	0	0	0	0	0	0	0	3.74E-02	1.61E+00	4.55E-02	-3.15E+01
Climate Change, biogenic [kg CO2 eq.]	-3.41E+00	-3.41E+00	2.58E-01	2.58E-01	0	0	0	0	0	0	0	0	2.73E-04	1.58E+00	1.58E+00	2.30E+00
Climate Change, land use and land use change [kg CO2 eq.]	2.29E-02	2.28E-02	1.49E-03	4.13E-06	0	0	0	0	0	0	0	0	3.60E-05	2.59E-05	3.97E-05	-7.78E-03
Ozone depletion [kg CFC-11 eq.]	4.37E-09	4.48E-09	1.60E-13	3.19E-14	0	0	0	0	0	0	0	0	4.22E-15	2.61E-09	7.72E-14	-7.12E-11
Acidification [Mole of H+ eq.]	2.89E-01	2.87E-01	6.46E-03	5.88E-05	0	0	0	0	0	0	0	0	1.60E-04	1.26E-03	1.51E-04	-8.46E-02
Eutrophication, freshwater [kg P eq.]	1.91E-04	1.89E-04	6.43E-06	2.83E-07	0	0	0	0	0	0	0	0	1.56E-07	9.53E-08	7.68E-06	-3.81E-05
Eutrophication, marine [kg N eq.]	6.40E-02	6.33E-02	3.26E-03	2.12E-05	0	0	0	0	0	0	0	0	7.98E-05	5.11E-04	6.11E-05	-1.95E-02
Eutrophication, terrestrial [Mole of N eq.]	6.61E-01	6.53E-01	3.59E-02	2.62E-04	0	0	0	0	0	0	0	0	8.78E-04	6.27E-03	4.12E-04	-1.90E-01
Photochemical ozone formation, human health [kg NMVOC eq.]	1.97E-01	1.95E-01	6.62E-03	5.66E-05	0	0	0	0	0	0	0	0	1.54E-04	1.34E-03	1.47E-04	-5.88E-02
Resource use, mineral and metals [kg Sb eq.]**	9.41E-05	9.45E-05	8.59E-08	3.72E-10	0	0	0	0	0	0	0	0	2.11E-09	-7.19E-08	1.22E-09	-1.45E-05
Resource use, fossils [MJ]**	1.48E+03	1.46E+03	1.72E+01	1.09E-01	0	0	0	0	0	0	0	0	4.99E-01	1.48E+00	6.80E-01	-6.04E+02
Water use [m ³ world equiv.]**	1.22E+01	1.28E+01	7.63E-02	2.46E-02	0	0	0	0	0	0	0	0	1.87E-03	3.62E-01	-1.28E-04	-1.68E+00
Use of renewable primary energy (PERE) [MJ]	2.45E+02	2.73E+02	7.34E-01	2.01E-02	0	0	0	0	0	0	0	0	1.82E-02	1.86E-01	6.20E-02	-1.12E+02

HAWORTH

	Product Stage w/ grid*	Product Stage w/ renewables*	Construc	struction Stage Use Stage End of Life				Use Stage			Benefits and Loads Beyond the System Boundary					
	A1-A3	A1-A3	A4	A5	B1	B2	В3	B4	B5	B 6	B7	C1	C2	C3	C4	D
Primary energy resources used as raw materials (PERM) [MJ]	3.19E+00	3.19E+00	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total use of renewable primary energy resources (PERT) [MJ]	2.48E+02	2.77E+02	7.34E-01	2.01E-02	0	0	0	0	0	0	0	0	1.82E-02	1.86E-01	6.20E-02	-1.12E+02
Use of non-renewable primary energy (PENRE) [MJ]	1.21E+03	1.19E+03	1.84E+01	1.10E-01	0	0	0	0	0	0	0	0	5.29E-01	1.48E+00	6.80E-01	-6.05E+02
Non-renewable primary energy resources used as raw materials (PENRM) [MJ]	2.84E+02	2.84E+02	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total use of non-renewable primary energy resources (PENRT) [MJ]	1.49E+03	1.47E+03	1.84E+01	1.10E-01	0	0	0	0	0	0	0	0	5.29E-01	1.48E+00	6.80E-01	-6.05E+02
Input of secondary material (SM) [kg]	4.43E+00	4.43E+00	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Use of renewable secondary fuels (RSF) [MJ]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Use of non renewable secondary fuels (NRSF) [MJ]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Use of net fresh water (FW) [m3]	5.83E-01	5.96E-01	2.52E-03	5.82E-04	0	0	0	0	0	0	0	0	6.14E-05	8.51E-03	1.90E-05	-3.85E-01
Hazardous waste disposed (HWD) [kg]	1.82E-05	1.82E-05	5.30E-11	3.74E-12	0	0	0	0	0	0	0	0	1.30E-12	5.55E-12	5.66E-11	-5.09E-06
Non-hazardous waste disposed (NHWD) [kg]	6.78E+00	6.79E+00	1.60E-03	3.03E-02	0	0	0	0	0	0	0	0	4.19E-05	1.42E-01	6.98E-01	-2.13E+00
Radioactive waste disposed (RWD) [kg]	3.80E-02	3.68E-02	5.28E-05	3.78E-06	0	0	0	0	0	0	0	0	1.30E-06	6.72E-05	8.04E-06	-1.92E-02
High-level radioactive waste, conditioned, to final repository (HLRW) [kg]	3.43E-05	3.29E-05	6.26E-08	3.20E-09	0	0	0	0	0	0	0	0	1.55E-09	9.43E-08	7.00E-09	-1.52E-05
Intermediate- and low-level radioactive waste, conditioned, to final repository (ILLRW) [kg]	3.80E-02	3.68E-02	5.27E-05	3.78E-06	0	0	0	0	0	0	0	0	1.30E-06	6.71E-05	8.03E-06	-1.92E-02
Components for re-use (CRU) [kg]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Materials for Recycling (MFR) [kg]	1.93E+00	1.93E+00	0	2.48E-01	0	0	0	0	0	0	0	0	0	1.21E+01	0	0
Material for Energy Recovery (MER) [kg]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

HAWORTH

	Product Stage w/ grid*	Product Stage w/ renewables*	Construc	tion Stage	Use Stage				_	End of Life	Load	enefits and Is Beyond the em Boundary				
	A1-A3	A1-A3	A4	A5	B1	B2	В3	B4	B5	B 6	B7	C1	C2	С3	C4	D
Total recovered energy exported from the product system (EEE and EET) [MJ]	1.48E+01	1.48E+01	0	9.34E-01	0	0	0	0	0	0	0	0	0	1.71E+01	0	0
Particulate matter [Disease incidences]	5.09E-06	5.07E-06	6.45E-08	4.01E-10	0	0	0	0	0	0	0	0	1.63E-09	6.13E-09	1.48E-09	-6.89E-07
lonizing radiation, human health [kBq U235 eq.]***	5.57E+00	5.49E+00	4.46E-03	5.77E-04	0	0	0	0	0	0	0	0	1.10E-04	4.11E-03	1.19E-03	-3.22E+00
Ecotoxicity, freshwater [CTUe]**	5.52E+02	5.50E+02	1.44E+01	6.55E-02	0	0	0	0	0	0	0	0	4.48E-01	5.53E-01	6.11E-01	-2.06E+02
Human toxicity, cancer [CTUh]**	7.02E-07	7.02E-07	3.34E-10	3.27E-12	0	0	0	0	0	0	0	0	7.92E-12	5.01E-11	2.99E-11	-8.57E-09
Human toxicity, non-cancer [CTUh]**	8.88E-07	8.85E-07	5.41E-09	1.85E-10	0	0	0	0	0	0	0	0	1.60E-10	3.96E-09	2.54E-09	-2.55E-07
Land Use [Pt]**	9.49E+02	9.33E+02	3.23E+00	2.44E-02	0	0	0	0	0	0	0	0	7.81E-02	1.66E-01	6.07E-02	-6.56E+02

The life cycle modules are defined by EN 15804 as follows: Product Stage – raw material supply, transport, and manufacturing; Construction Stage – distribution and installation; Use Stage – use of installed product, maintenance, repair, replacement, refurbishment, operational energy use, and operational water use; End of Life - deconstruction, transport of waste, waste processing, and disposal; Benefits and Loads Beyond the System Boundary - credits from energy and material capture.

*Impacts in the "product stage w/ grid electricity" stage includes electricity from the grid and on-site renewables whereas "product stage w/ purchased renewables" also includes electricity from the grid (if any), on-site renewables (if any), and voluntary renewable electricity purchased by Haworth for production purposes.

**The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experience with the indicator.

***This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator.

As required by the construction products PCR, this EPD shall declare the energy source behind electricity used in the manufacturing process in A3 and its climate impact as kg CO2 eq./kWh (using the GWP-GHG indicator).

A3 Electricity Climate Impact						
Site	Energy Source	GWP-GHG	Unit			
Cyprianów, Poland	National consumption mix	8.36E-01	kg CO2 eq / kWh			
Queluz, Portugal	National residual mix	3.50E-01	kg CO2 eq / kWh			
Queluz, Portugal	Renewable sources from supplier: hydro, solar, wind	1.45E-02	kg CO2 eq / kWh			

HAWORTH

Functional Unit						
Parameter	Value					
Declared unit	1 seat for 1 individual maintained for a 10-year period					
Number of occupants	1					
Reference service life required	10 years					
Biogenic carbon in product	4.39 kg C					
Biogenic carbon in packaging	0.36 kg C					

A4:	Transport	to the	building site

Parameter	Value per functional unit	Value per functional unit
Transportation type	Truck	Ship
Fuel consumption (l/km)	0.42 Diesel	N/A
Distance	1,091 km	N/A
Capacity utilization	67%	N/A
Capacity utilization volume factor	=1	N/A
Weight of product (kg)		14.579
Volume (m ³)		0.451

A5: Installation in the building					
Parameter	Value per functional unit				
Packaging waste produced	0.405 kg				
Installation Assumptions	No product waste, Installed with hand tools.				

B2: Maintenance					
Parameter	Value per functional unit				
Maintenance Process	No maintenance is expected for this product				
Maintenance cycle	0				
Ancillary Materials for maintenance (kg/cycle)	0				
Waste materials resulting from maintenance (kg)	0				
Net fresh water consumption during maintenance (m ³)	0				
Energy input during maintenance (kWh)	0				

Reference service life (RSL)								
Parameter	Value per functional unit							
Reference service life	10 years							
Design application parameters	Use as indicated in product brochure and warranty							
Declared product properties	Properties given in product description on page 3							
Indoor environment	Typical office and home environment							
Use conditions	Typical office and home use							

B3: Repair									
Parameter	Value per functional unit								
Repair process	No repairs are expected for this product								
Inspection process	No repairs are expected for this product								
Repair cycle (#/RSL)	0								
Ancillary materials (kg)	0								
Waste materials from repair (kg)	0								
Net freshwater consumption during repair (m ³)	0								
Energy input during repair (kWh)	0								

B4: Replacement

D-1. Kopia	aboment						
Parameter	Value per functional unit						
Replacement cycle (#/RSL)	0						
Energy input during replacement (kWh)	0						
Exchange of worn parts during the products life cycle (kg)	0						

B5: Refurbishment

Parameter	Value per functional unit
Refurbishment process	No refurbishment is expected for this product
Refurbishment cycle (#/RSL)	0
Energy input during refurbishment (kWh)	0
Material input for refurbishment (kg)	0
Waste material resulting from refurbishment (kg)	0

B6 and B7: Use of energy and Use of Water

Parameter	Value per functional unit						
Ancillary materials (kg)	0						
Net freshwater consumption (r	m³)0						
Power output of equipment (k)	W) 0						
Characteristic performance	n/a						

C1-C4: End-of-life									
Parameter	Value per functional unit								
Weight of product collected	14.579 kg								
Weight to recycling	11.858 kg								
Weight to energy recovery	1.928 kg								
Weight to landfill	0.793 kg								
Distance to recycling	32.2 km								
Distance to energy recovery	32.2 km								
Distance to landfill	32.2 km								

Modules Declared and Data Variation

	Product stage Construction process stage				Use stage						End of life stage				Resource recovery stage		
	Raw material supply	Transport	Manufacturing	Transport	Construction installation	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse-Recovery-Recycling- potential
Module	A1	A2	AЗ	A4	A5	B1	B2	B3	В4	B5	B6	B7	C1	C2	СЗ	C4	D
Modules declared	х	х	х	х	Х	Х	х	х	х	Х	х	Х	Х	х	х	х	Х
Geography	GLO	GLO	GLO	EU	EU	EU	EU	EU	EU	EU	EU	EU	EU	EU	EU	EU	EU
Specific data used		2%	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Variation - products		0%		-	-	-	-	-	-	-	-	-	-	-	-	-	-
Variation - sites		29%		-	-	-	-	-	-	-	-	-	-	-	-	-	-

References

- 1. EN 15804:2012+A2.2019/AC:2021, Sustainability of construction works Environmental product declarations Core rules for the product category of construction products
- 2. ISO 14040: 2006/ Amd 1:2020: Environmental Management Life cycle assessment Requirements and Guidelines.
- ISO 14044: 2006/ Amd 1:2017/ Amd 2:2020: Environmental Management Life cycle assessment Requirements and Guidelines – Amendment 1.
- 4. ISO 14025:2006 Environmental labels and declarations Type III environmental declarations Principles and Procedures.
- 5. ISO 21930:2017 Sustainability in buildings and civil engineering works Core rules for environmental product declarations of construction products and services.
- IPCC. (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press. In Press.Life Cycle Assessment, LCA Report for Haworth. WAP Sustainability Consulting. July 2023.
- 7. Life Cycle Assessment, LCA Report for Haworth. WAP Sustainability Consulting. March 2024.
- 8. NSF International. BIFMA PCR for Seating: UNCPC 3811, Version 3.0 valid through September 30, 2024
- TRACI: The Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts. Version 2.1 User Guide - <u>https://nepis.epa.gov/Adobe/PDF/P100HN53.pdf</u>.
- 10. US EPA, 2022. Facts and Figures about Materials, Waste and Recycling.- <u>https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/national-overview-facts-and-figures-materials</u>
- 11. Product Category Rules for Construction Products PCR 2019:14 Version 1.3.4. EPD International AB. 2023.
- 12. General Programme Instructions for the International EPD System Version 4.0. EPD International AB. March 2021.